
l"t. J. Solids Structures, 1974, Vol. 10, pp. 389-400. Pergamon Press. Printed in Gt. Britain.

THE DEPENDENCE OF SHEAR LAG ON
PARTIAL INTERACTION IN COMPOSITE BEAMS

A. O. ADEKOLAt
Department of Civil Engineering, University of Lagos, Nigeria

(Received 15 September 1972; revised 8 May 1973)

Abstract-In this paper, the constitutive equations which relate partial interaction with shear
lag are formulated and solved by series solutions for deflexion and in-plane stress in the slab to
satisfy all the known boundary conditions. The results clearly demonstrate the influence of
flexible shear connectors used in composite beams and also show that a more rational basis for
defining effective width is from deflexion considerations. This shows that effective width
increases with increasing degree of interaction, Le. as the number of flexible shear connectors
is increased. It is also established that there is a limiting degree of interaction beyond which
deflexion is not sensibly influenced.

INTRODUCTION

The treatment of the problem of the dependence of shear lag on partial interaction in
composite beams of steel and concrete is little understood from the classical elasticity point
of view. Severely approximate solutions exist which either treat partial interaction alone,
ignoring shear lag effects[5], or shear lag effects alone without a consideration of partial
interaction[4].

Here a composite beam system of several equally spaced simply supported steel beams
supporting and connected with a concrete slab, as shown in Fig. 1, is considered. Vertical
midspan point loads applied at the slab-beam junctions and superimposed live load applied
on the slab were considered.

Concrete is not truly an elastic material so that the analytical treatment of a member
made of concrete is often difficult whether as an isotropic case or as an orthotropic case,
both of which assume linear elasticity. In this paper, for convenience, the concrete slab has
been treated within the classical theory for isotropic materials. The general case of ortho
tropic material does not require a new or more complex method of solution.

Finally mention must be made of an earlier paper[4] in which edge and interaction effects
were ignored. These simplifying assumptions are dropped in the present paper.

GOVERNING EQUATIONS

Let (x, y) = (Xl' x 2 ) be the two-dimensional coordinates. The bending and torsional
moments due to the action of a discontinuous load distribution in an isotropic plate are
given by:

M ll = -g(W,11 + PW,22)')
M 22 = -g(W,22 + PW,II)'

M 12 = -g(1 - P)W,12,
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provided that the deflexion w(x, y) satisfies the equation

gV4 w = q(x, y), (2)

where V4 denotes the two-dimensional biharmonic operator. In (1) and (2), q(x, y) is the
prescribed load, J./. and 9 respectively stand for the Poisson's ratio and the flexural rigidity
of the plate, while a comma followed by an index indicates partial differentiation with
respect to the corresponding variable. Once the bending and torsional moments are known
the membrane stresses are readily computable.

For a complete description of the stress distribution in the plate, we adjoin to (I) and
(2) the stresses and displacements which are representable in terms of the Airy's stress
function by means of

0" 11 = ¢,22

0"22 = ¢,ll

0"12 = -¢,12 (3)

2G(I +J./.)U 1,1 =0"11-J./.0"22

2G(I + J./.)U 2,2 = 0"22 - J./.O"ll

where (U l' U2) denotes the displacement vector, G the shear modulus, while the function
¢ satisfies the biharmonic equation

(4)
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The preceding equations are to be accompanied by appropriate boundary conditions.
In particular, if the domain Ix I < a, IY I < 00 is occupied by an isotropic plate which is
simply supported along the edges, then we have

w=Mll =O

when x = ±a, Y = ±(2n - l)b, n = 1,2,3.
The condition of stress-free edges also implies that

0"11 = 0"12 = 0

when x = ±a, lyl < 00, while symmetry consideration imposes the conditions

U2 = W,2 = 0
for Ix I < a, y = O.

The equilibrium equation has been shown [4] to be given by

d 1
- EsIs WIllI - Qc 1 + - . F 11 + P = 0, . 2 '

where

(5)

(6)

(7)

(8)

-E,/sw,l1 = Ms and Qc,l = -2gV2
W,2'

The compatibility condition can be deduced from the assumption that the slip, e, is
related to the common interface differential strain, as well as the interacting slab in-plane
force and the steel beam axial force in the following manner:

On substituting for es and ec , this becomes

d t
(EsAs)-lF + 2" W,l1 - Ec-1(cP,22 - JlcP,l1) + 2" W,l1 = ks-IF,l1

in which

F= -2cP,2Iy =b'

Equations (8) and (9) are valid at the slab-beam junctions only.

(9)

ANALYSIS

Guided by the formulation of the problem, we assume that q(x, y) admits the Fourier
series representation

00

q(x, y) = g Lqn cos anx
n=l

where
an = (2n - l)n/2a and qn = 2an- 1

( -It+1q/ga.

The substitution of (10) into (2) gives a general solution for W in the form
00

W = L cos IXnX[lXn-4qn + An cosh(lXnY) + Bny sinh(lXnY)],
n= 1

(to)

(11)

where An and Bn are two arbitrary superposition coefficients. It is easily verified that the
choice of (11) ensures the automatic satisfaction of the two conditions in (5), as well as the
second condition in (7).
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(13)

We now take the general solution of (4) in the form

00

¢ = I COS(lXnx)[A n* cosh IXn Y + Bn*Y sinh IXn y]
n= 1

00

+ I cOS(Any)[a sinh An a cosh An X - X sinh )'n X cosh )'n a]Cn* (12)
n=1

where An*, Bn* and Cn* are three as yet arbitrary superposition coefficients and

An = (2n - l)n/b.

It is easily shown that the displacement component, deducible from (3) and (12) by straight
forward integration and differentiation, satisfies the remaining condition in (7), while the
normal stress (j 11 also satisfies the first condition in (6).

The satisfaction of the symmetry conditions

U z = w,z = 0

on (y = ±b, Ixl < a) now yields

IXnAn = -{I + IXnb coth(lXnb)}Bn }
IXnAn* = {(I - p)/(l + p) - IXnb coth(lXnb)}B.*,

while the vanishing of the shear stress (j 1Z at the edges x = ±a, Iy I < 00 yields the series
equation

00 00

I Dn* sin An y = I (-I)m+1IXm{lXmAm* sinh IXm Y + Bm*(sinh IXm Y + IXm Y cosh IXm y)} (14)
n=1 m=1

on setting

D.* = C.*{sinh Ana cosh Ana + Ana}An. (15)

If we now multiply both sides of (14) by sin(Ar y) and then integrate with respect to Y from
-b to b (assuming that the integration and summation signs can be interchanged), we
may make use of well-known trigonometric .orthogonality relations and the definite
integrals

bJ sinh(lXny)sin(ArY) dy = 2Xr(,V + 1X/)-1 sinh(lXnb), }
-b (16)

{b Y cosh(lXny)sin(ArY) dy = 2}'r(A/ + 1X/)-Z[b(A/ + IXnZ)cosh(lXnb) - 2IXn sinh(lXnb)]

to arrive at
00

Cn*[sinh(Ana)cosh(Ana) + Ana]An = 2 I [(I + p)-1 IXr -1 - IXr(lX/ + A/)-I]FnrBr* (17)
r= 1

where

Fnr = 2( _l)r+l AnlX/b- 1(1X/ + A/)-1 sinh(lXrb). (18)

Assuming now that the function p1 admits the Fourier series representation

00

pI = I Pn cos(IXn x), (19)
n= 1
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application of the equilibrium equation (8) at y = ±b, Ix I < a then yields

BnJn= E,/s qn - Pn - 2tda/(l + 11)-1 sinh(anb), Bn*
where

393

(20)

(21)2{ ( an b) . }I n = an anEsIs cosh anb + sinh anb + 4g smh anb .

It remains to satisfy the compatibility condition (9) at the slab-beam junctions. On
performing straightforward algebraic manipulations, we obtain

co

-4t(1 + fJ.) -1 I cos am x sinh am b{(EsAs)-1 + ks-lam2}Bm*
m=l

co

= Ec -1 I ,V{a sinh(Ana)cosh(AnX) - X sinh(Anx)cosh Ana}Cn*
n=1

co

+ fJ.Ec -1 I An{cosh(AnX)(Ana sinh An a - 2 cosh An a) - An X sinh All X cosh An a}Cn* (22)
n=1

on y = b and for Ix I < a.
The superposition coefficients Bn , and Bn* in this equation can easily be taken out from

under the summation signs. To this end, we multiply both sides of (22) by cos a,x and then
integrate with respect to x from -a to a. With the aid of well-known orthogonality re
lations and the easily checked results

rcosh(Ax)cos(anx) dx = 2anC _l)n+l(a/ + A2)-1 cosh ).a, }
-a (23)rx sinh AX cos anx dx = 2anC _l)n+1(a/ + A2)-2{a(a/ + A2)sinh Aa - 2A cosh Aa)}
-a

one arrives at the equation

where

vm- 1 = am
3adt(d + t)(1 + fJ.)-l(amb + sinh amb cosh amb)Jm-1

+ 4at(1 + fJ.)-1 sinh am b{(EsAs)-l + am
2ks-

1}

+ Ec -lama{(3 - fJ.)cosh amb - (1 + fJ.) . amb }
smh amb

(25)
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*(0)_ a(d+t) -1{ ( amb ) . \
Bm - - 2 VmJm IXm Pm cosh IXm b + sinh IXm b + 4gqm sm IXm bJ•

If we now introduce the additional auxiliary notations

8(-I)m+11X V (IIIX 2 - A 2)(1X 2 + A 2)-2 cosh A aH = m mr m n m n n

nm Ec{sinh Ana cosh Ana + Ana}

L nr = {lXr- 1(1 + tt)-l -lXr(lX/ + A/)-l}Fnr
00

Omr = I Hmn L nr ,
n=l

(26)

(27)

the elimination of C: between the two systems of equations given in equations (17) and
(24) yields the following infinite system of equations for the unknowns Bm (m = 1, 2, ...):

00

B * = B *(0) + '\' n B *m m ~mrr·

r= 1
(28)

Once the Bm* have been determined, the superposition coefficients Cn* and Bn follow from
equations (17) and (20). Equations (28) are solved by the usual segmentation method
according to which an n x n (n = 5 or 7) system of equations is considered.

It is apparent from equations (25) and (26) that the superposition coefficients Bn*, and
consequently all the other superposition coefficients of the stress and deflexion functions,
depend on k s which defines the degree of interaction.

Case ofno interaction

In the absence of any interaction between the two elements, that is, when the loaded
slab is merely resting on the beams and is not connected physically to them, the force of
interaction F becomes zero; hence the superposition coefficients An = Bn= Cn = O. An
"indeterminate" strain incompatibility condition exists (see equation (9». Under these
conditions, the deflexion of the slab-beam system along the steel beams, i.e. at y = ±b,
then becomes:

Wo = f cos IXnX{IXn-lPn(COSh IXmb + . ~b ) + 4IXnqng sinh IXmb}Jn-1. (29)
n= 1 sm IXmb

This is the deflexion equation at a rib of a system of elastically simply supported plate.
The maximum central deflexion of this system is used as the reference for estimating
deflexion factor Yw for the partial interaction case.

The loading, span, sectional properties of the steel section, etc. used for computations
are as follows:

Point load P = 299 kN.
Super load q = (2'873 + 0·2265t) kN/m 2

, including slab self weight, where t is in em.
Span 2a = 7·63 m.
Ribs are Universal Steel I-sections 610 x 228 mm x 137 N of
Area, As, = 1·789 X 10- 2 m2

, and second Moment of Area, IS' = 1·12 X 10- 3 m4
.

Modulus of elasticity of steel = 2·085 kN/cm2
.

Slab thickness t = 152·4 mm.
Modular ratio between steel and concrete is taken as 10 and Poisson ratio as 0·2.
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Deflexion factor

Deflexion factor is defined as the ratio of the central deflexion at a rib when there is
interaction and the central rib deflexion of the corresponding system of elastically rib
supported slab with identical rib and slab dimensions and material properties. This has
been taken as a measure of the increased stiffness of the composite system and also as an
exposition of the economics of composite construction (see Figs. 2 and 3).

00
I an -4{qn - a/Bn(cosh anb + O:nb/sinh anb}cos anx

n=lI'w = -00-:-"----=---------------------

I {an -1 Pn(cosh O:n b + O:n b/sinh O:n b) + 4an- 2qn 9 sinh an b}
n= 1

EFFECTIVE WIDTHS

(30)

(31)

Effective width definition has traditionally been based on the distribution of longi
tudinal stress across the slab width. This definition takes effective width as the equivalent
width of slab having a constant stress distribution across it and sustaining a force equal
to the interacting axial force in each of the elements of the composite system. The magnitude
of the constant stress is taken as the peak longitudinal stress in the slab at the slab-beam
junction. Based on this definition, the effective width factor [3 is given by

[3 = f~b (Jll dy.
b'(Jlllb

The current analysis has, however, exposed the inadequacy of this definition, since
effective width values obtainable from it depends on the manner of distribution across the
slab width of the longitudinal stress in the slab. The values of effective widths for partial
interaction obtained from expression (31) decrease with increasing degree of interaction
(see Table 2 for [3). On the other hand, the middle-plane slab stress at the slab-beam junction
increases with increasing degree of interaction, as would be expected from a physical
conjecture. Notwithstanding this trend of growth of stress with increasing degree of
interaction, the implication of decreasing effective width with increasing degree of inter
action would be that less of the slab is participating in increasing the stiffness of the
equivalent T-beam as interaction progresses. Such a phenomenon would be inconsistent
with physical expectation and this short-coming points to the inherent weakness of this
definition for effective width.

The alternative accepted definition of effective width based on deflexion has provided
a trend that agrees with physical expectation and has been taken as the basis of calculating
the effective width factors presented. Deflexion at the rib junction is determined by the
" exact" analysis, giving;

00
w = I cos anx{O:n -4qn - O:n -lBn(cosh O:nb + anb/sinh anb)}.

n= 1
(32)

Assuming that each rib supports the point load on it together with the superimposed slab
load between two ribs, then the deflexion of the equivalent section becomes

00 {[P 2( _ 1)n + 1 ] }
IV = (EJe)-l I cos anx an -4 - + (Ps + 2bq)

n=l a ana
(33)
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where Ie is the equivalent second moment of area of the composite system. Equating the
two deflexions, we have

00 {[P 2(_l)n+1 ]}Leos IXnX IXn-4 - + (Ps + 2bq)
n=1 a IXna

00

EJe = Leos IXnX{lXn-4qn - IXn-1Bn(cosh IXnb + IXnb/sinh IXnb)}· (34)
n=1

If it is assumed that the transformed section theory can still be applied to a partially inter
acting system, the effective width factor f3w, using the equivalent steel second moment of
area and based on the transformed section theory, is given by

f3w 2(2b 2 t4
) + f3w{A.(3d 2 + 6dt + 4t2

) - 12(Ie - I.)}mbt - 6m2As(Ie - Is) = O. (35)

Using transformed section theory, the values of effective widths obtained from de
flexion consideration were used in calculating the maximum steel bottom flange stress for
various side ratios and ks • These values were then compared with the maximum stresses
obtained from the analysis for the appropriate side ratio and k s (see Table 1 for utr/usb),

lOOk,
E,

0'0625
0'125
0·250
0'500
1·000
2·000
4·000

Table 1. U"

U'b

b
a

0·4 0·6 0·8 1·0

1·011 1'023 1·038 1·050
0'988 0'998 0·014 1'034
0·967 0·975 0·989 1·009
0'951 0'958 0'970 0·989
0·940 0·946 0·958 0'976
0·935 0·940 0'951 0·969
0'933 0'937 0·948 0'965

It is seen from this table that apart from values at low interaction, the values of the stresses
obtained from the transformed section theory are generally lower than those obtained
from the exact analysis for the same side ratio and interaction. Nevertheless, it is thought
that this approximation by the transformed theory could still be applied since the values
obtained when it is employed are generally over 90 per cent of the values from exact
analysis.

Slip is expressed as a fraction of the maximum central deflexion for the particular
interaction and side ratio. Figure 5 shows the familiar theoretical slip characteristics in
composite beams, with the slip decreasing as ks increases. The analysis shows that for
full interaction to be attainable, k s must be fairly large, i.e. of the order of 30 KN/mm2

•

For practical purposes, however, a value of k s = O'04Es should be adequate as a guide
for full interaction.
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CONCLUDING REMARKS

The analysis has demonstrated the dependence on partial interaction of shear lag and
has led to the conclusion that effective width concept ought really to be based on deflexion
considerations rather than stress considerations.

Table 2 shows that effective width based on stress definition decreases from a higher
value at low interaction to some limiting lower value at a high degree of interaction,
although correspondingly the maximum slab middle-plane stress increases from zero at
zero interaction to some limiting value at a high degree of interaction. These two obviously
interrelated phenomena make one no wiser as to how these" stress" effective widths can
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Table 2. For b/a = 0·4

lOOk,
f3

amp

E, am!

0·0625 0'759 0'323
0'125 0·753 0·468
0·250 0'744 0'607
0'500 0'731 0·725
1·000 0'715 0·815
2·000 0'700 0·882
4·000 0'688 0'929
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be judiciously used in design of T-beams at any interaction. On the other hand, the be
haviour of the" deflexion" effective widths with increasing interaction lends itself to the
concept of increased equivalent stiffness attributable to the increasing participation of the
slab as interaction progresses. The transformed section theory will therefore validly give
an approximation of that equivalent stiffness in terms of the effective width of slab.

The slight underestimate of stress obtained using transformed section theory in con
junction with deflexion effective width would seem not to need compensating in view of
the manner of deciding design loads in everyday engineering practice and the factor of
ignorance between actual working loads, and design loads.

Figure 4 shows that steel bottom flange stress is decreasing as interaction increases but
reaches a limiting value quickly at a k s value of 0·015Es • This means that, from the point
of view of steel bottom flange stress reduction, this value of ks would be adequate for
deciding a "pseudo" full-interaction situation. Much the same sort of reasoning can be
applied to the deflexion factor curves (Figs. 2 and 3).

At high interaction, when for practical purposes the system could be assumed to be
one of full interaction, effective width values to be used in computations could be taken
as i of span for aspect ratio of 0·4 and below t of span for 0·6 and -1 of span for 0,8-1,0.

The analysis shows, theoretically, that for full interaction to exist, k s must attain an
infinite value. This would mean an infinite number of connectors in a composite T-beam.
The analysis has however demonstrated that the stresses and deflexions tend so quickly
to limiting values that, for practical purposes, the k s value need not exceed 2 per cent of
Es ' although correspondingly slip may still exist appreciably and be of the order of 1·25 per
cent of the central deflexion.

Acknowledgements-My thanks go to Dr. K. Aderogba, Lecturer in Engineering Analysis in the Department,
who assisted with the mathematical simplification of the equations obtained, and also made a number of
useful suggestions on the method of computation. My appreciation also goes to Mr. Johnson of the Shell BP
Computer Centre in Lagos and Dr. J. O. Sonuga, Senior Lecturer in the Department, both of whom gave
invaluable advice on the programming.

REFERENCES

1. S. Timoshenko and S. Woinowsky-Krieger, Theory ofPlates and Shells. McGraw-Hill, New York (1959).
2. Chi-Teh Wang, Applied Elasticity. McGraw-Hill, New York (1953).
3. G. Petit Bois, Table of Indefinite Integrals. Dover Publications, New York (1961).
4. A. O. Adekola, Effective width of composite beams of steel and concrete. Struct. Engr 46 (9), 285-289

(1968).
5. A. O. Adekola, Partial interaction between the elastically connected elements of a composite beam. Int.

J. Solids Struct. 4, 1125-1135 (1968).



400 A. O. ADEKOLA

A6CTJlllKT - B pa60Te $OPMYJIHPYlOTCSI Orrpe;:J;eJISIlOmHe ypaBHeHHSI, KOTOpble CBSl3bIBaIOT

'IaCTH'ffioe B3llliMO;:J;ei!:cTBHe C 3arra3;:J;bIBaHHeM C;:J;BHra. YpaBHeHHSI peWalOTCSI MeTO;:J;OM PSl;:J;OB,

;:J;JISI orrpe;:J;eJIeHHSI rrporH6a H HarrpSilKeHHi!: B rrJIOCKOCTH CTeplKHSI. PeWeHHSI y;:J;OBJIeTBOpSilOT

BCeM H3BecTHbIM rpaHH'lHbIM YCJIOBHSlM. Pe3YJIbTaTbI O'leBH;:J;HO YKa3blBalOT BJIHSlHHe rH6KHX

COe;:J;HHHTeJIell: C;:J;BHra, HCrrOJIb3yeMblx B COCTaBHbIX 6aJIKax. OHH, TaKlKe, rrOKa3bIBalOT, 'ITO

C IIeJIblO rrOJIY'IeHHSI 60JIee paIIHOHaJIbHOi!: 6a3bI ;:J;JISI orrpe;:J;eJIeHHSI 3$$eKTlIBHoll: urnpHHbI

Ha;:J;O 06CYlK;:J;aTb yCJIOBHSI H3rH6a. 3TO 3Ha'lHT, 'ITO 3$$eKTHBHaSi WHpHHa yBeJIH'ffiBaeTCSI C

pOCTOM CTerreHH B3aHMO;:J;ei!:cTBHSI, T. e. eCJIH yBeJIH'IHBaeTCSI 'IHCJIO rH6KHX COe;:J;HHeHHi!:

C;:J;BHra. L!:oKa3bIBaeTCSI, TaKlKe, 'ITO CywecTByeT Kpall:HaSi CTerreHb B3aHMO;:J;eHCTBHSI, BbIWe

KOTOpOH rrporH6 3aMeTHO He OKa3bIBaeT 3Ha1lHTeJIbHOrO BJIHSlHHSI.


